All Learning Resources

  • ScienceBase as a Platform for Data Release

    This video tutorial provides information about using ScienceBase as a platform for data release. We will describe the data release workflow and demonstrate, step-by-step, how to complete a data release in ScienceBase.

  • Introduction to GRASS GIS

    GRASS GIS, commonly referred to as GRASS (Geographic Resources Analysis Support System), is a free and open source Geographic Information System (GIS) software suite used for geospatial data management and analysis, image processing, graphics and maps production, spatial modeling, and visualization. GRASS GIS is currently used in academic and commercial settings around the world, as well as by many governmental agencies and environmental consulting companies. It is a founding member of the Open Source Geospatial Foundation (OSGeo).

    This training includes an introduction to raster and vector analysis, image processing, water flow modeling, Lidar data import and analysis, solar radiation analysis, shaded relief, network analysis using four interaces, and python scripting.   The training uses GRASS GIS 7.0 and a GRASS GIS NC SPM sample dataset.  The GitHub repository can be found at: .

  • What is Open Science?

    This introductory course will help you to understand what open science is and why it is something you should care about. You'll get to grips with the expectations of research funders and will learn how practising aspects of open science can benefit your career progression. Upon completing this course, you will:

    • understand what Open Science means and why you should care about it
    • be aware of some of the different ways to go about making your own research more open over the research lifecycle
    • understand why funding bodies are in support of Open Science and what their basic requirements are 
    • be aware of the pontential benefits of practicing open science 

    It is important to remember that Open Science is not different from traditional science. It just means that you carry out your research in a more transparent and collaborative way. Open Science applies to all research disciplines. While Open Science is the most commonly used term, you may also hear people talking about Open Scholarship or Open Research in the Arts and Humanities.

  • Research Data Management Guide

    This guide can assist you in effectively managing, sharing, and preserving your research data. It provides information and guidance for all aspects of the data lifecycle, from creating data management plans during the proposal phase to sharing and publishing your data at the conclusion of your project. This guide is not specific to any particular funder, discipline, or type of data.  The guide also features data management stories and examples, both good and bad, that would be useful to research data management instructors or other service providers.


    This training module provides you with instructions on how to deploy B2SAFE and B2STAGE with iRODS4. It also shows you how to use these services. Moreover, the module provides hands-on training on Persistent Identifiers, more specifically Handle v8 and the corresponding B2HANDLE python library.

    B2SAFE is a robust, safe and highly available service which allows community and departmental repositories to implement data management policies on their research data across multiple administrative domains in a trustworthy manner.

    B2STAGE is a reliable, efficient, light-weight and easy-to-use service to transfer research data sets between EUDAT storage resources and high-performance computing (HPC) workspaces.

    Please consult the user documentation on the services for a general introduction, if needed, before following the contents of this git repository. This training material foresees two types of trainees: those who want to learn how to use the EUDAT B2SAFE and B2STAGE services; and those who prefer to deploy and integrate these services. Following the full, in-depth tutorial will allow you to understand how the components of a service are combined and thus enables you to also extend the integration of services at the low-level (technology-level rather than API level). Following just the "use" part of the training will familiarise you with the APIs of the services, but not with the underlying technology and its wiring.

  • Training on using the E2O WCI Data Portal

    Course Content: This course will offer an introduction to the eartH2Observe Water Cycle Integrator (WCI) Data Portal available at

    Course Objectives: Training the users on how to navigate through the E2O WCI portal: navigate around the map, select indicators by searching, perform some analysis on the selected indicators, download data, and other WCI functionalities.

    Why is this topic interesting? With this training we can increase the use of the WCI, build capacity, and furthermore the dissemination of all the available data and tools. Upon completion of this training the users will have increased capacity in efficiently using the portal and its functionalities.

    The course includes 3 lessons:
    Lesson 1:  GISportal - An Introduction
    Lesson 2:  GISportal - External Data and Collaboration
    Lesosn 3:  GISportal - Docker Version

    The Earth2Observe (E2O) Water Cycle Integrator (WCI) portal takes data that you select and plots it on a map to help you analyse, export and share it.

    The WCI portal is an open source project built by Plymouth Marine Laboratory's Remote Sensing Group. The portal builds on the development of several other EU funded projects, past and present, that PML have involvement in. You can find the code on GitHub at 

  • Data Management Guidelines

    The guidelines available from this web page cover a number of topics related to research data management.  The guidelinesare targeted to researchers wishing to submit data to the Finnish Social Science Data Archive, but may be helpful to other social scientists interested in practices related to research data management with the understanding that the guidelines refer to the situation in Finland, and may not be applicable in other countries due to differences in legislation and research infrastructure.
    High level topics (or chapters) covered include:
    - Data management planning (the data, rights, confidentiality and data security, file formats and programs, documentation on data processing and content, lifecycle, data management plan models)
    - Copyrights and agreements
    - Processing quantitative data files
    - Processing qualitiative data files
    - Anonymisation and personal data including policies related to ethical review of human sciences
    - Data description and metadata
    - Physical data storage
    - Examples 
    The guidelines are also available in FSD's Guidelines in DMPTuuli, a data management planning tool for Finnish research organisations. It provides templates and guidance for making a data management plan (DMP).

  • Bio-Linux

    Bio-Linux 8 is a powerful, free bioinformatics workstation platform that can be installed on anything from a laptop to a large server, or run as a virtual machine. Bio-Linux 8 adds more than 250 bioinformatics packages to an Ubuntu Linux 14.04 LTS base, providing around 50 graphical applications and several hundred command line tools. The Galaxy environment for browser-based data analysis and workflow construction is also incorporated in Bio-Linux 8.
    Bio-Linux 8 comes with a tutorial document suitable for complete beginners to Linux, though some basic bioinformatics knowledge (eg. what is a read, assembly, feature, translation) is assumed.  The tutorial comprises a general introduction to the Linux system and a set of exercises exploring specific bioinformatics tools.  You can find the latest version of the tutorial via the Bio-Linux documentation icon on the desktop.  There is also a copy on-line at: Allow yourself around 2 days to work through this, depending on your previous experience. Other, taugh courses can be found on the Bio-Linux Training web page.
    Bio-Linux 8 represents the continued commitment of NERC to maintain the platform, and comes with many updated and additional tools and libraries.  With this release we support pre-prepared VM images for use with VirtualBox, VMWare or Parallels.  Virtualised Bio-Linux will power the EOS Cloud, which is in development for launch in 2015.

  • Introduction to HydroShare

    HydroShare is an online, collaborative system for sharing and publishing a broad set of hydrologic data types, models, and code. It enables people to collaborate seamlessly in a high performance computing environment, thereby enhancing research, education, and application of hydrologic knowledge. HydroShare is being developed by a team from the Consortium of Universities for the Advancement of Hydrologic Science, Inc. (CUAHSI) supported by National Science Foundation awards ACI-1148453 and ACI-1148090.

    The introduction to HydroSHare inlcude a Getting Started guide, a Frequently Asked Questions guide, and a number of videos on topics such as: 
    - Collaborate Data and Model Sharing using HydroShare
    - Delineate Watersheds and Perform Hydrologic Terrain Analysis with HydroShare and CyberGIS
    - Share, Publish and execute your SWAT models with HydroShare and SWATShare

    CUAHSI is an organization representing more than 130 U.S. universities and international water-science-related organizations and is sponsored by the National Science Foundation to provide infrastructure and services to advance the development of hydrologic science and education in the United States.

  • The Realities of Research Data Management

    The Realities of Research Data Management is a four-part series that explores how research universities are addressing the challenge of managing research data throughout the research lifecycle. In this series, we examine the context, influences, and choices higher education institutions face in building or acquiring RDM capacity—in other words, the infrastructure, services, and other resources needed to support emerging data management practices. Our findings are based on case studies of four institutions: University of Edinburgh (UK), the University of Illinois at Urbana-Champaign (US), Monash University (Australia) and Wageningen University & Research (the Netherlands), in four very different national contexts.

    - Part One of the series:  A Tour of the Research Data Management (RDM) Service Space, found at:
    - Part Two of the series:  Scoping the University RDM Service Bundle at:
    - Part Three of the series:  Incentives for building University RDM Services at:
    - Part Four of the series:  Sourcing and Scaling RDM Services at:
    In addition, supplemental material has been provided including in-depth profiles of each collaborating institution's RDM service spaces, a "Works in Progress Webinar:  Policy Realities in Research Data Management" with an accompanying three-part Planning Guide.  at:

  • Data Management for the Humanities

    The guidelines available from this web page cover a number of topics related to Data Management. Many of the resources and information found in this guide have been adapted from the UK Data Archive and the DH Curation Guide. The guidelines are targeted to researchers wishing to submit data to the social science research data, and would be useful to new data curators and data librarians in the Arts & Humanities as well.  Each section has useful references for further study, if desired.
    What You Will Find in This Guide:
    -How to Document and Format your Data
    -Examples of Data Management Plans (DMP) and Data Curation Profiles (DCP)
    -Tools to Help You Create DMPs and DCPs
    -California Digital Library Data Repositories
    -Where to Get Help on Campus
    -A list of Federal Funding Agencies and Their Data Management Requirements
    -A Description of Data Curation for the Humanities and What Makes Humanities Data Unique
    -Information on Data Representation
    -Resources on Data Description Standards

  • Intro to SQL for Data Science

    The role of a data scientist is to turn raw data into actionable insights. Much of the world's raw data—from electronic medical records to customer transaction histories—lives in organized collections of tables called relational databases. Therefore, to be an effective data scientist, you must know how to wrangle and extract data from these databases using a language called SQL (pronounced ess-que-ell, or sequel). This course teaches you everything you need to know to begin working with databases today!


    ResearchVault is a secure computing environment where scientists and collaborators can conduct research on restricted and confidential data.

    ResearchVault (also known as ResVault) is designed to act as a workstation that is secure and pre-approved with the capacity for large-scale data storage and computation. Researchers can:

    Securely store restricted data like:

    • electronic protected health information (ePHI) (HIPAA)
    • export-controlled data (ITAR/EAR)
    • student data (FERPA)
    • controlled unclassified information (CUI)
    • intellectual property data (IP)

    Store and work with larger data sets than is possible on a regular workstation
    Perform work on stored data sets with familiar software tools running on virtual machines located in the UF data center
    Concurrently run more programs than on a regular workstation
    Display work results on a graphical interface that is securely transmitted to remote devices such as desktops, laptops, or iPads
    Work collaboratively with other researchers on the same data sets using different workstations.

    The system is modeled on a bank vault where you receive:

    An individual deposit box with secure storage for valuables
    Privacy from other users and bank staff
    A secure area within the vault to privately access your valuables

    ResVault is available to University of Florida faculty and students.  People not associated with UF can be sponsored by faculty at UF.  Training materials available from the ResVault home page include an introductory / overview video, and a recording of a training session on the research administration for restricted data that was given on Oct 12, 2018. The recording is available from the UF Media Website. It describes how the requirement for using special IT infrastructure is handled and how the right environment for each project is determined, as well as the training requirements for project participants.

  • Managing Creative Arts Research Data

    This post-graduate teaching module for creative arts disciplines is focused on making data and digital documentation that is highly usable and has maximum impact. The module content is particularly well suited for inclusion within MA programmes dealing with ephemeral art forms such as dance, music, visual art, theatre or media design. Learning is self-directed. MCARD-ExcersiceV1.0.pdf is an optional, summative assessment exercise.

    This module, funded as part of the wider JISC Managing Research Data programme as part of the Curating Artistic Research Output (CAiRO) Project, offers data management knowledge tailored to the special requirements of the creative arts researcher who is producing non-standard (i.e. non-textual) research outputs. The module aims to develop the development of skills required by arts researchers to effectively self-archive and then disseminate data made through research activities. The module can also help researchers to better understand data management issues and then communicate needs to third parties, such as institutional repositories, in order to negotiate appropriate levels of service.

    Downloadable resources associated with this module include a zip file containing module content as stand alone .html files, a PDF of optional, summative exercise, and a PDF version of the introduction.  Topics include:
    Unit 1: Introducing art as research data
    Unit 2: Creating art as research data
    Unit 3: Managing art as research data
    Unit 4: Delivering art as research data

    Each unit has a suggested order (accessible via the navigation on the left of each page) and addition ‘Focus on’ content which further illustrates topics covered in the main body.  Module content can be accessed directly online at:

  • Best Practices in Data Collection and Management Workshop

    Ever need to help a researcher share and archive their research data? Would you know how to advise them on managing their data so it can be easily shared and re-used? This workshop will cover best practices for collecting and organizing research data related to the goal of data preservation and sharing. We will focus on best practices and tips for collecting data, including file naming, documentation/metadata, quality control, and versioning, as well as access and control/security, backup and storage, and licensing. We will discuss the library’s role in data management, and the opportunities and challenges around supporting data sharing efforts. Through case studies we will explore a typical research data scenario and propose solutions and services by the library and institutional partners. Finally, we discuss methods to stay up to date with data management related topics.

    This workshop was presented at NN/LM MAR Research Data Management Symposium: Doing It Your Way: Approaches to Research Data Management for Libraries.  Powerpoint slides are available for download.  files include a biophysics case study.

    Terms of Access:  There is 1 restricted file in this dataset which may be used;  however, you are asked not to share the Mock lab notebook. It is completely fictitious. Users may request access to files.

  • Pyunicorn Tutorials

    pyunicorn (Unified Complex Network and RecurreNce analysis toolbox) is a fully object-oriented Python package for the advanced analysis and modeling of complex networks. Above the standard measures of complex network theory such as degree, betweenness and clustering coefficient it provides some uncommon but interesting statistics like Newman’s random walk betweenness. pyunicorn features novel node-weighted (node splitting invariant) network statistics as well as measures designed for analyzing networks of interacting/interdependent networks.

    Moreover, pyunicorn allows to easily construct networks from uni- and multivariate time series data (functional (climate) networks and recurrence networks). This involves linear and nonlinear measures of time series analysis for constructing functional networks from multivariate data as well as modern techniques of nonlinear analysis of single time series like recurrence quantification analysis (RQA) and recurrence network analysis. Other introductory information about pyunicorn can be found at: .

    Tutorials for pyunicorn are designed to be self-explanatory.  Besides being online, the tutorials are also available as ipython notebooks.  For further details about the used classes and methods please refer to the API at:

  • E-Infrastructures and Data Management Toolkit

    This online toolkit provides training and educational resources for data discovery, management, and curation across the globe, in support of an international collaborative effort to enable open access to scientific data.  Tools within the toolkit include:
    - DDOMP Researcher Guide which has resources and tips for creating a successful DDOMP (data management plan)
    - Data Management Training including webinars, courses, certifications, and literature on data management topics
    - Best Practices & Standards which provide guidelines for effective data management.
    Video tutorials about each of these tools are available at: 
    Other capacity building tools include a Data Skills Curricula Framework to enhance information management skills for data-intensive science which was developed by the Belmont Forum’s e-Infrastructures and Data Management (e-I&DM) Project to improve data literacy, security and sharing in data-intensive, transdisciplinary global change research.  More information about the curricula framework including a full report and an outline of courses important for researchers doing data-intensive research can be found at: .

  • Introduction to Research Data Management - half-day course (Oxford)

    Teaching resources for a half-day course for researchers (including postgraduate research students), giving a general overview of some major research data management topics. Included are a slideshow with presenter's notes, a key resources hand-out, and two other hand-outs for use in a practical data management planning exercise. These course materials are part of a set of resources created by the JISC Managing Research Data programme-funded DaMaRO Project at the University of Oxford. The original version of the course includes some Oxford-specific material, so delocalized versions (which omit this) of the slideshow and the key resources hand-out are also provided

  • Introduction to Humanities Research Data Management

    Reusable, machine-readable data are one pillar of Open Science (Open Scholarship). Serving this data
    reuse aspect requires from researchers to carefully document their methods and to take good care of
    their research data. Due to this paradigm shift, for Humanities and Heritage researchers, activities and
    issues around planning, organizing, storing, and sharing data and other research results and products
    play an increasing role. Therefore, during two workshop sessions, participants will dive
    into a number of topics, technologies, and methods that are connected with
    Humanities Research Data Management. The participants will acquire knowledge and skills that will
    enable them to draft their own executable research data management plan that will support the
    production of reusable, machine-readable data, a key prerequisite for conducting effective and
    sustainable projects. Topics that will be covered are theoretical reflections on the role of data within
    humanities research and cultural heritage studies, opportunities and challenges of eHumanities and
    eResearch, implementing the FAIR principles and relevant standards, and basics of Data Management
    Learning outcomes: Participants of this workshop will gain an overview about issues related to
    Humanities Research Data Management and learn about relevant tools and information resources.
    Through a hands-on session, the participants will be especially equipped and skilled to draft the nucleus
    of their own Research Data Management Plan.

  • Research data management training modules in Social Anthropology (Cambridge)

    Looking after digital data is central to good research. We all know of horror stories of people losing or deleting their entire dissertation just weeks prior to a deadline. Even before this happens, good practice in looking after research data from the beginning to the end of a project makes work and life a lot less stressful. Defined in the widest sense, digital data includes all files created or manipulated on a computer (text, images, spreadsheets, databases, etc). With publishing and archiving of research increasingly being online, we all have a responsibility to ensure the long-term preservation of our research data, while at same time being aware of issues of sensitive data, intellectual property rights, open access, and freedom of information. The DataTrain teaching materials have been designed to familiarise post-graduate students in good practice in looking after their research data. A central tenet is the importance of thinking about this in conjunction with the projected outputs and publication of research projects. This teaching package is focussed on data management for Social Anthropology.
    For each of three modules of the course, notes and powerpoint presentations are available as well a a survey model, a list of useful sofwrae, and a list os references and web-based resources as handouts.  Topics include the process of fieldwork, the kinds of data collected, and the methods for their collection.  Other topics relate to the organisation of data including basic information on file management, some practical demonstration of software tools and back-up techniques.  
    Course materials are available in a downloadable zip file.

  • Library Carpentry OpenRefine

    This Library Carpentry lesson introduces librarians to working with data in OpenRefine. At the conclusion of the lesson you will understand what the OpenRefine software does and how to use the OpenRefine software to work with data files.  This lesson is a supplement to

  • RDM Training (Herts) Module 3: Safeguarding Data

    Discussing the benefits and risks of storage media, back up systems, sharing data across the internet, and general security, this training module encourages secure storage and sharing of data whilst in the working stage of a research project. Slides and training notes are included in this pack in one collection, but can be divided into four sections; storage solutions, keep it safe - back up, sharing, and security. A lesson plan is included in the zip package of module files.
    This module is 3 of 4.  The topics of the other modules are:
    Module 1:  Project Planning: 
    Module 2:  Getting Started:
    Module 4:  Finishing Touches:

  • RDM Training (Herts) Module 2: Getting Started

    This module highlights research data management issues that should be addressed when starting a project: choosing file structures and naming conventions, file versioning, metadata and documentation, software choices, and the best practice for programming. Considering these details before data collection ensures that the data are well managed and organised, and require fewer transformations when preparing them for publication. Slides and training notes are included in this pack in one collection, but can be divided into five sections: filing systems, metadata, software, documentation, and coding.
    This module is 2 of 4.  The topics of the other modules are:
    Module 1:  Project Planning:
    Module 3:  Safeguarding Data:
    Module 4:  Finishing Touches:

  • RDM Training (Herts) Module 4: Finishing Touches

    At the end of a research project, the science is published and the data should be preserved. This final RDM module includes advice on where to publish the science outcomes and the supporting data as well as how to select the data, anonymise it, and choose the right archive for your data. Slides and training notes are included in this pack in one collection, but can be divided into four sections: publication, preserving data, anonymisation, and archiving data.
    This module is 4 of 4.  The topics of the other modules are:
    Module 1:  Project Planning:
    Module 2:  Getting Started:
    Module 3:  Safeguarding Data:

  • Data Management and Data Management Plans

    Modern research requires special tooling, software and processes that allow researchers to link, transform, visualise and interpret the data. Lack of proper data management practices can lead in extreme cases to irreversible loss of data. As a consequence, reproducibility of scientific experiments can be questioned. This in turn reduces trust in scientific findings and undermines reputation of researchers and their institutions. For this reason, excellent data management skills are nowadays an essential asset to successful researchers. This talk will introduce participants to Data Management Plans that help to plan how data is handled during experiments so that no data is lost, can easily be found, correctly interpreted using provided metadata, and properly licensed. Participants will learn about practical aspects of data management. They will also get familiar with research funder requirements for Data Management Plans that are becoming an obligatory project deliverable around the world.
    Topics covered:
    • Why good data management is important?
    • What are the Data Management Plans?
    • How to create a Data Management Plan?
    • What are the best data management practices?
    • How to make research data FAIR?
    • What are the funder requirements for Data Management Plans?
    • What does the future look like concerning data management?

  • RDM Training (Herts) Module 1: Project Planning

    This module introduces data management plans and the considerations that should be made during the planning stage of a project. After an introduction to funding body requirements and the benefits of sharing data to research, the DMPonline tool is promoted as the prefered method of completing a data management plan, as required by funding bodies. Finally, a brief breakdown of the content of data management plans and advice on completing them is included. Slides and training notes are included in this pack in one collection, but can be divided into three sections: an introduction to RDM, data management plans, and the project lifecycle, to be used separately. A lesson plan is included in the zip package of module files.

    This module is 1 of 4.  The topics of the other modules are:
    Module 2:  Getting Started:
    Module 3:  Safeguarding Data:
    Module 4:  Finishing Touches:

  • Python Intro for Libraries

    This lesson is an introduction to programming in Python for librarians with little or no previous programming experience. It uses examples that are relevant to a wide range of library use cases, and is designed to be used as a prerequisite lesson for other Python based lessons that will be developed in the future, e.g. using the Pandas for data analysis.

    This lesson references the Spyder IDE, but can be taught using a regular Python interpreter as well. Please note that this lesson uses Python 3 rather than Python 2.  More information about this lesson can be found at: 


  • Introduction to Data Management Planning

    This slide presentation is part of a workshop offered at Riga Technical University, Riga, to research support staff as an introduction to research data managment.  The slide presentation introduces data management plans, which are often submitted as part of grant applications, but are useful whenever researchers are creating data.  See below for instructions on downloading the slides.  The presentation covers the following topics:

    • What is a data management plan (DMP)?
    • Reasons for developing a DMP
    • Horizon 2020 EU Research and Innovation program templates
    • DMP deliverables 
    • Key decisions in DMP development
    • Resources about the DMP review process
    • Example DMPs

    This PowerPoint slide presentation can be downloaded from the provided web page by clicking on "Introduction to Data Management Planning" (11:45) on the agenda. 

  • Demonstration of DMPOnline (Data Management Planning Tool)

    Slide presentation demonstration of DMPOnline is part of a workshop offered at Riga Technical University, Riga giving an introduction to research data management for research support staff.  The slide presentation is designed to help research support staff help researchers create, review, and share data management plans that meet institutional and funder requirements.  The slides can be downloaded by going to item 12:15 on the agenda.  More information can be found about the DMPonline tool at:

  • How to Customise DMPonline

    This downloadable slide presentation is part of a workshop offered at the Stratford Library and Learning Centre in 2016, and discusses what to consider when customising the Data Management Planning Tool (DMPTool) which is used to create, review, and share data management plans that meet institutional and funder requirements. See instructions for downloading the slides below.  The presentation covers:

    • The concept of guidance by theme
    • An overview of options and follow-along demo
    • Adding templates
    • Adding guidance
    • Customising funder templates

    This PowerPoint slide presentation can be downloaded from the provided web page by clicking on "How to customise DMPonline" (10:00) on the agenda. More information about the DMPonline tool can be found at:

  • Demonstration of Customising DMPonline

    This slide presentation is part of a workshop offered at the Stratford Library and Learning Centre, and provides a practical lab exercise for using the administrative interface to customise the DMPonline tool.  More information about the DMPonline tool can be found at:

  • Introduction to Research Data Management

    This slide presentation is part of a workshop presented at the Library of Birmingham, Birmingham U.K., and provides an introduction to the research data management landscape, data sharing, and data management planning.
    This PowerPoint slide presentation can be downloaded from the provided web page by clicking on "Introduction to Research Data Management" (10:10) on the agenda.

  • Digital Curation 101 Materials

    Digital Curation 101 employs the curation lifecycle model sections as a means of presenting content to students by means of the curricula materials on this website.  The model enables granular functionality to be mapped against it: to define roles and responsibilities and build a framework of standards and technologies to implement.  The model describes digital curation in the following stages:  Conceptualisation, Create and or Receive, Appraise and Select, Ingest, Preservation Action, Store, Access and Reuse.
    It can be used to help identify additional steps that may be required – or actions not required by certain situations or disciplines – and to ensure that processes and policies are adequately documented. 
    The DCC is keen to support the reuse of our generic training materials as the basis of more specific training aimed at different disciplines and/or institutions. Our generic materials are accessible for review and tailoring.
    We kindly request that you cite these materials in any derivatives that you develop and encourage you to share your tailored materials with us so that we can disseminate them to a wider audience.  Archived versions of this curriculum are available from the main website.

  • RDM for Librarians

    This is an introductory research data management (RDM) presentation for librarians. PowerPoint slides are available for download at the provided URL. The course covers:

    • Research data and RDM
    • Data management planning
    • Data sharing
    • Skills
    • RDM at University of Northampton

    An RDM for librarians handbook is also available at the provided URL.

  • "I'm leaving you... my data!" -- Practical Research Data Sharing Within Your Institution and the Wider Community

    This slide presentation discusses recent developments in research data management (RDM) practices in response to *Horizon 2020, United Kingdom's Engineering and Physical Science Research Council (EPSRC), Research Councils UK (RCUK), and institutional University of Southampton policy.
    Topics include:

    • Research, data, and repositories
    • European, national, and institutional policy
    • Research Data Alliance - workflows for data publishing
    • Identifiers and data citation
    • Force 11 data citation principles
    • DataCite and digital object identifiers (DOIs)
    • Linking data and publications
    • Scenarios exploring data management concepts and processes
    • How to get researchers' attention
    • Research costing
    • Active data sharing
    • Timeline for implementing institutional data management
    • Biomedical research software as a service (BRISSkit) overview

    *About Horizon 2020 (from​):By coupling research and innovation, Horizon 2020 is helping to achieve this with its emphasis on excellent science, industrial leadership and tackling societal challenges. The goal is to ensure Europe produces world-class science, removes barriers to innovation and makes it easier for the public and private sectors to work together in delivering innovation.

  • Analyzing DMPs to Inform Research Data Services

    Presentation about lessons learned from the DART project, which developed an analytic rubric to standardize the review of data management plans as a means to inform targeted expansion or development of research data services at academic libraries. 

  • Research Data Management and Integrating an Electronic Lab Notebook (ELN) with a University Research Infrastructure

    Two slide presentations:
    1. An overview of University of Edinburgh research data management policy and implementation
    2. Integrating an Electronic Lab Notebook (ELN) with a University Research Infrastructure: Case Study with Rspace at the University of Edinburgh, which includes:

    • Where demand for ELNs is coming from
    • RSpace - origins and overview
    • RSpace at Edinburgh - linking to files and depositing content in Edinburgh DataStore and archiving in Edinburgh DataVault
    • Platform for integration with other research data management infrastructures


  • Project TIER - Demo Project

    Project TIER (Teaching Integrity in Empirical Research) promotes the integration of principles and practices related to transparency and replicability in the research training of social scientists. 

    The demo project available below consists of a "hypothetical" research paper, accompanied by complete replication documentation that meets the standards of the TIER Protocol Specifications.  The paper is "hypothetical" in the sense that it was prepared to provide a brief and user-friendly example of TIER replication documentation, rather than to report on substantive research.  Nonetheless, the results presented in the paper were generated from real data, and the documentation can be used to replicate the data processing and analysis that produced the results.

    We suggest you explore this demo project in tandem with the TIER Protocol Specifications (located at: the Specifications give general descriptions of all the components that should be included in the replication documentation for a paper; the demo project provides concrete examples of these components.

  • University of Oxford - Research Data Management Training Materials

    The Data Management Rollout at Oxford (DaMaRO) Project created a research data management policy for the University and the infrastructure to enable researchers to comply with it.

    In spring and summer 2013, the DaMaRO Project ran a series of face-to-face training events, aimed chiefly at postgraduate research students and early career researchers. The final versions of the teaching materials from these events are available at this resources website. In addition, there are key resources handouts, case studies in the humanities, social sciences and physical sciences, a list of 20 questions to ask regarding research data management, and the top ten things researchers need to know about research data management.  Slides are available for the training events.    

  • LYRASIS Online Classes

    This webpage lists the courses, both free and with a fee, on various subjects related to the treatment and management of data. Examples of courses include Dublin Core Metadata, Instructional Design for Librarians, Introduction to Copyright for Digitization, and many others.  The topics vary over time.